

Aquatic corridors The Blue Network

Pascal ROCHE ONEMA Rhône-Alpes Region

Essential needs in a fish's life

Nutrition with necessity to disperse when food becomes scarce and competition increases

Rest with good protection against predators and changes in the choice of resting spots according to fish size

Reproduction in suitable habitats, often different from feeding habitats

Habitat preferences change according to :

species size season activity availability of preferred habitat

Connectivity and Continuity

Fish species may need access to whole watersheds to accomplish their life cycle and survive environmental and habitat changes

Obstructions in small streams

Mostly culvert for road and trail passages

Little hydraulic impact

Obstacles in alpine streams and rivers

Rock weir Le Guiers

Numerous obstacles in old industrial valleys but many are not used anymore

La Fure

Restoring continuity and connectivity

The blue Network :

1 - National : Classified waters (conservation or restauration)

- « Migratory fish » : Eel, Salmon, Shad, Sturgeon, Lampreys
- Stretches of rivers with a role of « Biological reservoir »
- « Very Good Quality » streams
- 2 Regional : Complementary approach
 - Rivers where local effort for continuity has started
 - Rivers where restoration of continuity is a priority

GRENOBLE

Obstacles in rivers (Water District database)

Classified for restoration of continuity

Classified rivers

• • Restoration of continuity Prio 1 and 2

Restoring continuity

The blue Network :

What is to be done with those dams?

Dam removal

Le Guiers vif Dam replaced by A small rock weir

Le Guiers vif Bypass of a dam with creation of a new streambed

<image>

Le Buëch Breaching of the dam

Technical solutions when removal is not possible

Le Guiers

Solutions for large and small species

Artificial bypass chanel La Drôme

Fish entrance / Over

Overflow outlet

Fich pass with regular roughness Le Gardon

Passable rock weirs

Rock weirs passable by design Le Guiers Height< 1,2m Slope 5%

Devices for downstream migration

Halsou (Nive)

Downstream migration device

Poutes (Allier)

Lalevade (Ardèche)

Problems with fish passes

Lack of maintenance (BSN dam, Ardèche)

Streambed erosion Special care is needed during construction in powerfull rivers (natural thresholds ensure some stability)

Lack of bottom roughness

- OK : Big angular stones
- No roughness : Stones deep in concrete

Better cooperation for better results an example of what should be avoided...

Rock weir built to replace a vertical weir (2009) Supposed to be passable by fish slope 9-10%, height 2 m, length 23 m

1.8 m/s

La Cance

Thank you for your attention